
Windowing Functions
Hitoshi Harada

(umi.tanuki@gmail.com)
Head of Engineering Dept.

FORCIA, Inc.
David Fetter

(david.fetter@pgexperts.com)

PGCon2009, 21-22 May 2009 Ottawa

mailto:umi.tanuki@gmail.com
mailto:umi.tanuki@gmail.com
mailto:david.fetter@pgexperts.com
mailto:david.fetter@pgexperts.com

What are Windowing Functions?

PGCon2009, 21-22 May 2009 Ottawa

What are the Windowing Functions?

• Similar to classical aggregates but does more!
• Provides access to set of rows from the current row
• Introduced SQL:2003 and more detail in SQL:2008

– SQL:2008 (http://wiscorp.com/sql200n.zip) 02: SQL/Foundation
• 4.14.9 Window tables
• 4.15.3 Window functions
• 6.10 <window function>
• 7.8 <window clause>

• Supported by Oracle, SQL Server, Sybase and DB2
– No open source RDBMS so far except PostgreSQL (Firebird trying)

• Used in OLAP mainly but also useful in OLTP
– Analysis and reporting by rankings, cumulative aggregates

PGCon2009, 21-22 May 2009 Ottawa

http://wiscorp.com/sql200n.zip
http://wiscorp.com/sql200n.zip

How they work and what you get

PGCon2009, 21-22 May 2009 Ottawa

How they work and what do you get

• Windowed table
– Operates on a windowed table
– Returns a value for each row
– Returned value is calculated from the rows in the window

PGCon2009, 21-22 May 2009 Ottawa

How they work and what do you get

• You can use…
– New window functions
– Existing aggregate functions
– User-defined window functions
– User-defined aggregate functions

PGCon2009, 21-22 May 2009 Ottawa

How they work and what do you get

• Completely new concept!
– With Windowing Functions, you can reach outside the current row

PGCon2009, 21-22 May 2009 Ottawa

How they work and what you get

PGCon2009, 21-22 May 2009 Ottawa

[Aggregates] SELECT key, SUM(val) FROM tbl GROUP BY key;

How they work and what you get

PGCon2009, 21-22 May 2009 Ottawa

[Windowing Functions] SELECT key, SUM(val) OVER (PARTITION BY key) FROM tbl;

depname empno salary

develop 10 5200
sales 1 5000
personnel 5 3500
sales 4 4800
sales 6 550
personnel 2 3900
develop 7 4200
develop 9 4500
sales 3 4800
develop 8 6000
develop 11 5200

PGCon2009, 21-22 May 2009 Ottawa

Who is the highest paid relatively compared with the department average?

How they work and what you get

PGCon2009, 21-22 May 2009 Ottawa

depname empno salary avg diff

develop 8 6000 5020 980
sales 6 5500 5025 475
personnel 2 3900 3700 200
develop 11 5200 5020 180
develop 10 5200 5020 180
sales 1 5000 5025 -25
personnel 5 3500 3700 -200
sales 4 4800 5025 -225
sales 3 4800 5025 -225
develop 9 4500 5020 -520
develop 7 4200 5020 -820

SELECT depname, empno, salary, avg(salary) OVER (PARTITION BY depname)::int,
 salary - avg(salary) OVER (PARTITION BY depname)::int AS diff
FROM empsalary ORDER BY diff DESC

How they work and what you get

Anatomy of a Window
• Represents set of rows abstractly as:
• A partition

– Specified by PARTITION BY clause
– Never moves
– Can contain:

• A frame
– Specified by ORDER BY clause and frame clause
– Defined in a partition
– Moves within a partition
– Never goes across two partitions

• Some functions take values from a partition.
Others take them from a frame.

PGCon2009, 21-22 May 2009 Ottawa

A partition
• Specified by PARTITION BY clause in OVER()
• Allows to subdivide the table, much like

GROUP BY clause
• Without a PARTITION BY clause, the whole

table is in a single partition

PGCon2009, 21-22 May 2009 Ottawa

func
(args)

OVER ()

partition-clause order-
clause frame-

clause

PARTITION BY expr, …

A frame
• Specified by ORDER BY clause and frame

clause in OVER()
• Allows to tell how far the set is applied
• Also defines ordering of the set
• Without order and frame clauses, the whole of

partition is a single frame

PGCon2009, 21-22 May 2009 Ottawa

func
(args)

OVER ()

partition-clause order-
clause frame-

clause

ORDER BY expr [ASC|DESC]
[NULLS FIRST|LAST], …

(ROWS|RANGE) BETWEEN UNBOUNDED
(PRECEDING|FOLLOWING) AND CURRENT
ROW

The WINDOW clause
• You can specify common window definitions

in one place and name it, for convenience
• You can use the window at the same query

level

PGCon2009, 21-22 May 2009 Ottawa

WINDOW w AS ()

partition-clause order-
clause frame-

clause

SELECT target_list, … wfunc() OVER w
FROM table_list, …
WHERE qual_list, ….
GROUP BY groupkey_list, ….
HAVING groupqual_list, …

Built-in Windowing Functions

PGCon2009, 21-22 May 2009 Ottawa

List of built-in Windowing Functions

• row_number()
• rank()
• dense_rank()
• percent_rank()
• cume_dist()
• ntile()

• lag()
• lead()
• first_value()
• last_value()
• nth_value()

PGCon2009, 21-22 May 2009 Ottawa

row_number()
• Returns number of the current row

PGCon2009, 21-22 May 2009 Ottawa

val row_number()
5 1
5 2
3 3
1 4

SELECT val, row_number() OVER (ORDER BY val DESC) FROM tbl;

Note: row_number() always incremented values independent of frame

rank()
• Returns rank of the current row with gap

PGCon2009, 21-22 May 2009 Ottawa

val rank()
5 1
5 1
3 3
1 4

SELECT val, rank() OVER (ORDER BY val DESC) FROM tbl;

Note: rank() OVER(*empty*) returns 1 for all rows, since all rows
are peers to each other

gap

dense_rank()
• Returns rank of the current row without gap

PGCon2009, 21-22 May 2009 Ottawa

val dense_rank()
5 1
5 1
3 2
1 3

SELECT val, dense_rank() OVER (ORDER BY val DESC) FROM tbl;

no gap

Note: dense_rank() OVER(*empty*) returns 1 for all rows, since all rows
are peers to each other

percent_rank()

• Returns relative rank; (rank() – 1) / (total row – 1)

PGCon2009, 21-22 May 2009 Ottawa

val percent_rank()
5 0
5 0
3 0.666666666666667
1 1

SELECT val, percent_rank() OVER (ORDER BY val DESC) FROM tbl;

Note: percent_rank() OVER(*empty*) returns 0 for all rows, since all rows
are peers to each other

values are always between 0 and 1 inclusive.

cume_dist()

• Returns relative rank; (# of preced. or peers) / (total row)

PGCon2009, 21-22 May 2009 Ottawa

val cume_dist()
5 0.5
5 0.5
3 0.75
1 1

SELECT val, cume_dist() OVER (ORDER BY val DESC) FROM tbl;

Note: cume_dist() OVER(*empty*) returns 1 for all rows, since all rows
are peers to each other

= 2 / 4

= 2 / 4

= 3 / 4

= 4 / 4

The result can be emulated by
“count(*) OVER (ORDER BY val DESC) / count(*) OVER ()”

ntile()
• Returns dividing bucket number

PGCon2009, 21-22 May 2009 Ottawa

val ntile(3)
5 1
5 1
3 2
1 3

SELECT val, ntile(3) OVER (ORDER BY val DESC) FROM tbl;

Note: ntile() OVER (*empty*) returns same values as above, since
ntile() doesn’t care the frame but works against the partition

The results are the divided positions, but if there’s remainder add
row from the head

4 % 3 = 1

lag()
• Returns value of row above

PGCon2009, 21-22 May 2009 Ottawa

val lag(val)
5 NULL
5 5
3 5
1 3

SELECT val, lag(val) OVER (ORDER BY val DESC) FROM tbl;

Note: lag() only acts on a partition.

lead()
• Returns value of the row below

PGCon2009, 21-22 May 2009 Ottawa

val lead(val)
5 5
5 3
3 1
1 NULL

SELECT val, lead(val) OVER (ORDER BY val DESC) FROM tbl;

Note: lead() acts against a partition.

first_value()
• Returns the first value of the frame

PGCon2009, 21-22 May 2009 Ottawa

val first_value(val)
5 5
5 5
3 5
1 5

SELECT val, first_value(val) OVER (ORDER BY val DESC) FROM tbl;

last_value()
• Returns the last value of the frame

PGCon2009, 21-22 May 2009 Ottawa

val last_value(val)
5 1
5 1
3 1
1 1

SELECT val, last_value(val) OVER
 (ORDER BY val DESC ROWS BETWEEN UNBOUNDED PRECEEDING
AND UNBOUNDED FOLLOWING) FROM tbl;

Note: frame clause is necessary since you have a frame between
the first row and the current row by only the order clause

nth_value()
• Returns the n-th value of the frame

PGCon2009, 21-22 May 2009 Ottawa

val nth_value(val, val)
5 NULL
5 NULL
3 3
1 5

SELECT val, nth_value(val, val) OVER
 (ORDER BY val DESC ROWS BETWEEN UNBOUNDED PRECEEDING
AND UNBOUNDED FOLLOWING) FROM tbl;

Note: frame clause is necessary since you have a frame between
the first row and the current row by only the order clause

aggregates(all peers)
• Returns the same values along the frame

PGCon2009, 21-22 May 2009 Ottawa

val sum(val)
5 14
5 14
3 14
1 14

Note: all rows are the peers to each other

SELECT val, sum(val) OVER () FROM tbl;

cumulative aggregates
• Returns different values along the frame

PGCon2009, 21-22 May 2009 Ottawa

val sum(val)
5 10
5 10
3 13
1 14

Note: row#1 and row#2 return the same value since they are the peers.
the result of row#3 is sum(val of row#1…#3)

SELECT val, sum(val) OVER (ORDER BY val DESC) FROM tbl;

Inside the Implementation

PGCon2009, 21-22 May 2009 Ottawa

Where are they?
• Windowing Functions are identified by a flag

in pg_proc, which means they are very similar
to plain functions
– pg_proc.proiswindow : boolean

• All the aggregates including user-defined
ones in any language can be called in
WindowAgg, too
– Your old code gets new behaviour!

• src/include/catalog/pg_proc.h
– pg_proc catalog definitions

• src/backend/utils/adt/windowfuncs.c
– implementations of built-in window functions

PGCon2009, 21-22 May 2009 Ottawa

Added relevant nodes
• WindowFunc

– primitive node for function itself “wfunc(avg1, …)”

• WindowDef
– parse node for window definition “over (partition by …

order by …)”

• WindowClause
– parse node for window clause “window (partition by …

order by …) as w”

• WindowAgg
– plan node for window aggregate

• WindowAggState
– executor node for window aggregate

PGCon2009, 21-22 May 2009 Ottawa

Hacking the planner

PGCon2009, 21-22 May 2009 Ottawa

SELECT depname, empno, salary,
 avg(salary) over (partition by depname) AS a,
 rank() over (partition by depname order by salary desc) AS r
FROM empsalary ORDER BY r

Sort (cost=215.75..218.35 rows=1040 width=44)
 Output: depname, empno, salary, (avg(salary) OVER (?)), (rank() OVER (?))
 Sort Key: (rank() OVER (?))
 -> WindowAgg (cost=142.83..163.63 rows=1040 width=44)
 Output: depname, empno, salary, (avg(salary) OVER (?)), rank() OVER (?)
 -> Sort (cost=142.83..145.43 rows=1040 width=44)
 Output: depname, empno, salary, (avg(salary) OVER (?))
 Sort Key: depname, salary
 -> WindowAgg (cost=72.52..90.72 rows=1040 width=44)
 Output: depname, empno, salary, avg(salary) OVER (?)
 -> Sort (cost=72.52..75.12 rows=1040 width=44)
 Output: depname, empno, salary
 Sort Key: depname
 -> Seq Scan on empsalary (cost=0.00..20.40 rows=1040 width=44)
 Output: depname, empno, salary

Hacking the planner

PGCon2009, 21-22 May 2009 Ottawa

TargetEntry1:depname
TargetEntry2:empno
TargetEntry3:salary
TargetEntry4:avg
TargetEntry5:rank

Final output

Hacking the planner

PGCon2009, 21-22 May 2009 Ottawa

Var1:depname
Var2:empno
Var3:salary

SeqScan

TargetEntry1:depname
TargetEntry2:empno
TargetEntry3:salary
TargetEntry4:avg
TargetEntry5:rank

Final output

Hacking the planner

PGCon2009, 21-22 May 2009 Ottawa

Var1:depname
Var2:empno
Var3:salary

SeqScan

TargetEntry1:depname
TargetEntry2:empno
TargetEntry3:salary
TargetEntry4:avg
TargetEntry5:rank

Sort1

WindowAgg1
Var1:depname
Var2:empno
Var3:salary
WindowFunc1:avg

Final output

Hacking the planner

PGCon2009, 21-22 May 2009 Ottawa

Var1:depname
Var2:empno
Var3:salary

SeqScan

TargetEntry1:depname
TargetEntry2:empno
TargetEntry3:salary
TargetEntry4:avg
TargetEntry5:rank

Sort1

WindowAgg1
Var1:depname
Var2:empno
Var3:salary
WindowFunc1:avg

Sort2

WindowAgg2
Var1:depname
Var2:empno
Var3:salary
Var4:avg
WindowFunc:rank

Final output
Sort3

Hacking the planner
• We could optimize it by relocating WindowAgg

PGCon2009, 21-22 May 2009 Ottawa

SELECT depname, empno, salary,
 rank() over (partition by depname order by salary desc) AS r,
 avg(salary) over (partition by depname) AS a
 FROM empsalary ORDER BY r

Sort (cost=161.03..163.63 rows=1040 width=44)
 Output: depname, empno, salary, (rank() OVER (?)), (avg(salary) OVER (?))
 Sort Key: (rank() OVER (?))
 -> WindowAgg (cost=72.52..108.92 rows=1040 width=44)
 Output: depname, empno, salary, (rank() OVER (?)), avg(salary) OVER (?)
 -> WindowAgg (cost=72.52..93.32 rows=1040 width=44)
 Output: depname, empno, salary, rank() OVER (?)
 -> Sort (cost=72.52..75.12 rows=1040 width=44)
 Output: depname, empno, salary
 Sort Key: depname, salary
 -> Seq Scan on empsalary (cost=0.00..20.40 rows=1040 width=44)
 Output: depname, empno, salary

No Sort!

How the executor creates a window

PGCon2009, 21-22 May 2009 Ottawa

Table

Destination

Normal Scan

Values are never shared among
returned rows

row#1

row#2

row#3

row#4

How the executor creates a window

PGCon2009, 21-22 May 2009 Ottawa

Table

row#1

row#2

row#3

row#4
Destination

WindowAgg

Window
Object

powered
by

Tuplestore

row#1

row#2

row#3

row#4

Buffering rows in the Window
Object, so the functions can
fetch values from another row.

This kills performance if the
Window Object holds millions of
rows.

How the executor creates a window

PGCon2009, 21-22 May 2009 Ottawa

Table

row#1

row#2

row#3

row#4
Destination

WindowAgg

row#1

row#2

row#3

row#4Window
Object

powered
by

Tuplestore
row#5

row#6

row#5

row#6

If the rest of rows don’t need
buffered rows any more, trim the
Tuplestore from its head to “mark
pos”

winobj->markpos

How the Windowing Functions work
• Functions workflow is very similar to plain functions
• Each function has its own seek position

PGCon2009, 21-22 May 2009 Ottawa

wfunc1(fcinfo){
 WindowObject winobj = PG_WINDOW_OBJECT();

 /* do something using winobj */
}

WindowAgg calls the wfunc1()

Window
Object

mark pos

fetch value

fetch value

Return a value

How the Windowing Functions work
• What about aggregates?

PGCon2009, 21-22 May 2009 Ottawa

Window
Object

Initialize aggregate

aggregate
trans value

aggregate
trans value

Final
funcresult1

aggregate
trans value

Final
funcresult2

Trans value is cached and reused after final function call.
-> BE CAREFUL of anything that will break if the final function is called
more than once.
http://archives.postgresql.org//pgsql-hackers/2008-12/msg01820.php

Trans
func

Trans
func

Trans
func

http://archives.postgresql.org/pgsql-hackers/2008-12/msg01820.php
http://archives.postgresql.org/pgsql-hackers/2008-12/msg01820.php

Write Your Own Windowing Function

PGCon2009, 21-22 May 2009 Ottawa

Write your own Windowing Function
• NOT documented for now, but you can do it
• The normal argument API like PG_GETARG_XXX()

does not work for window functions
• STRICT-ness is meaningless
• The function must use the V1 calling convention
• Get WindowObject using PG_WINDOW_OBJECT()
• Check window-ness by WindowObjectIsValid()
• Call APIs to fetch values
• More details in src/include/windowapi.h, see

also:
– src/executor/nodeWindowAgg.c
– src/utils/adt/windowfuncs.c

• These may be changed in the future releases
PGCon2009, 21-22 May 2009 Ottawa

Windowing Function APIs
• PG_WINDOW_OBJECT(fcinfo)

– Retrieve WindowObject, which is an interface of the
window, for this call.

• WinGetPartitionLocalMemory(winobj, sz)
– Store its own memory. It is used in rank() to save the

current rank, for example.

• WinGetCurrentPosition(winobj)
– Get current position in the partition (not in the frame).

Same as row_number()

• WinGetPartitionRowCount(winobj)
– Count up how many rows in the partition. Used in ntile() for

example.

PGCon2009, 21-22 May 2009 Ottawa

Windowing Function APIs

• WinSetMarkPosition(winobj, markpos)
– Give to winobj a hint that you don’t want rows preceding to

markpos anymore

• WinRowsArePeers(winobj, pos1, pos2)
– Rows at pos1 and at pos2 are peers? “Peers” means both

rows have the same value in the meaning of ORDER BY
columns

PGCon2009, 21-22 May 2009 Ottawa

Windowing Function APIs
• WinGetFuncArgInPartition(winobj, argno,

relpos, seektype, set_mark, isnull, isout)
– Fetch argument from another row in the partition. “isout”

will be set to true if “relpos” is out of range of the partition.

• WinGetFuncArgInFrame(winobj, argno, relpos,
seektype, set_mark, isnull, isout)
– Fetch argument from another row in the frame. “isout” will

be set to true if “relpos” is out of range of the frame (may
be within the partition.)

• WinGetFuncArgCurrent(winobj, argno, isnull)
– Same as PG_GETARG_XXX(argno). Fetch argument from the

current row.

PGCon2009, 21-22 May 2009 Ottawa

Moving average example

• http://archives.postgresql.org/pgsql-
hackers/2009-01/msg00562.php

• With standard SQL, you have to wait for
extended frame clause support like ROWS n
(PRECEDING|FOLLOWING) to calculate curve
smoothing, but this sample does it now.

PGCon2009, 21-22 May 2009 Ottawa

http://archives.postgresql.org/pgsql-hackers/2009-01/msg00562.php
http://archives.postgresql.org/pgsql-hackers/2009-01/msg00562.php
http://archives.postgresql.org/pgsql-hackers/2009-01/msg00562.php
http://archives.postgresql.org/pgsql-hackers/2009-01/msg00562.php

Future work

PGCon2009, 21-22 May 2009 Ottawa

Future work for later versions
• More support for frame clause

– ROWS n (PRECEDING|FOLLOWING)
– RANGE val (PRECEDING|FOLLOWING)
– EXCLUDE (CURRENT ROW|GROUP|TIES|NO OTHERS)
– Not so difficult for window functions but integration with

classical aggregates is hard

• Performance improvements
– Reduce tuplestore overhead
– Relocate WindowAgg node in the plan

• Support PLs for writing Windowing Functions
– Let PLs call Windowing Function APIs

PGCon2009, 21-22 May 2009 Ottawa

Finally…

PGCon2009, 21-22 May 2009 Ottawa

Thanks all the hackers!!
• Simon Riggs

– discussion over my first ugly and poor design

• Heikki Linnakangas
– improvement of window object and its buffering strategy

• Tom Lane
– code rework overall and deep reading in the SQL spec

• David Fetter
– help miscellaneous things like git repository and this session

• David Rowley
– many tests to catch early bugs, as well as spec investigations

• Takahiro Itagaki, Pavel Stehule, and All the Hackers
• I might have missed your name here, but really

appreciate your help.

PGCon2009, 21-22 May 2009 Ottawa

